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Abstract
The relationship between stability and popularity has been well studied in the con-

text of classical stable marriage and its variants. In these settings, all stable match-
ings are popular, and all strongly popular matchings are stable. Additionally, there
are efficient algorithms for popularity testing and finding strongly popular matchings.
This project investigates these properties of popularity in three-dimensional variants
of stable marriage. We show that stable matchings need not be popular, and strongly
popular matchings need not be stable. We also give graph-theoretic formulations of
popularity testing and prove the hardness of deciding whether a popular matching
exists in instances of certain variants of three-dimensional stable marriage.

1 Introduction
The interest in matching problems with preferences in computer science began with the Gale
and Shapley seminal paper, where they defined the Stable Marriage Problem (sm) [5]. An
instance of sm involves sets of n men and n women, where each has a strict preference list
over the agents in the opposite set. The extension of sm addressed this paper consists of
matching three sets of agents instead of two. We refer to these sets as men, women, and
dogs, and each agent of a set has preferences over the combinations of the other two sets
[11]. For example, each man has a strict ranking over all possible women-dog pairs. This
is called Three-Dimensional Stable Marriage (3dsm). Work related to 3dsm has produced
largely negative results, as finding a matching, even in many restricted cases, is NP-complete
[2, 7, 8, 11].

The popularity criterion has also been investigated in instances of sm. First, Gärdenfors
found that all strongly popular matchings are stable, and all stable matchings are popular
[6]. More recently, it was shown that there are efficient algorithms for popularity testing and
for finding popular matchings in instances of sm [1, 9]. In this paper, we determine which
of these results hold in 3dsm and its variants and present results on popularity testing and
the problem of deciding the existence of popular matchings in a given instance.

2 Problem Statements and Notation

2.1 Stability
The Stable Marriage Problem With Incomplete Lists (smi) consists of two disjoint sets M =
{m1, . . . , mn} and W = {w1, . . . , wn}, referred to as men and women respectively. Let
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E ⊆ M × W be the set of acceptable man-woman pairs. Each mi strictly ranks the women
in E. This ranking is called a preference list. For women wj, wk and man mi, we say that
mi prefers wj to wk if (mi, wj), (mi, wk) ∈ E(m) and wj exceeds wk on mi’s preference list.
The same holds for women with respect to men. A matching is a set M ⊆ E such that each
man and woman appear in a pair at most once, and for some agent a, we denote M(a) as
a’s partner in M . An acceptable pair (m, w) ∈ E \ M blocks (or is called a blocking pair for)
a matching M if:

1. m is unassigned or prefers w to M(m), and

2. w is unassigned or prefers m to M(w).

The matching M is stable if it admits no blocking pair.
The stable marriage problem sm is the special case of smi where E = M × W . Since all

man-woman pairs are acceptable, when we define a matching in an instance of sm, it will
always be a perfect matching (one where every agent is assigned exactly one partner). We will
do the same for all settings that have no further restrictions on the acceptable assignments.
Lastly, pairs (and later triples) will be represented with the agents concatenated instead of
in a tuple form, so for some m ∈ M and w ∈ W we write mw to denote (m, w).

2.2 Stability in Three Dimensions
An instance of the Three-Dimensional Stable Marriage Problem (3dsm) of size n consists
of disjoint sets M = {m1, . . . , mn}, W = {w1, . . . , wn}, and D = {d1, . . . , dn} of men,
women, and dogs respectively. Each man mi has a strict preference list over the pairs in
W × D. Similarly, each woman has preferences over M × D, and each dog has preferences
over M × W . We define the ≺ relation for preferences such that mi prefers wjdk to wkd` if
an only if wkd` ≺mi

wjdk. A matching M is a set of n disjoint triples. As in sm, we define
a blocking triple as an element t ∈ M × W × D such that each agent a of t prefers their
assignment in t to their assignment in M . A matching is stable if it admits no blocking
triple.

In one special case of 3dsm, every man is primarily interested in the women, every
woman is primarily interested in the men, and there are no restrictions on the preferences
of dogs. For example, if some man mi prefers wjdk to w`dm, then for any p, q ∈ [n] the
man mi prefers wjdp to w`dq. We say that an instance of 3dsm with these restrictions has
lexicographic preferences [4]. Interestingly, instances of 3dsm with lexicographic preferences
always admit a stable matching, and there is an algorithm to find one in polynomial time
[3].

We define a variant of 3dsm where ties are allowed in the agents’ preference lists. Instead
of agents ranking elements of combinations of the other two sets, they now rank disjoint
subsets of those combinations For example, some mi could have the preference list

mi {w1d1} {w2d2, w3d3, . . . , wn−1dn−1} {wndn},

where w1d1 is his first choice, all of w2d2, . . . , wn−1dn−1 is his second choice, and wndn is his
last choice. Naturally, he is indifferent between every element of his second choice set. We call
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this setting Three-Dimensional Stable Marriage with Ties (3dsmt). When the preferences
of an agent in instances of 3dsmt have a set with only one element, we will present the
element without brackets on the preference list. For example, mi’s preference list may be
written as

mi w1d1 {w2d2, w3d3, . . . , wn−1dn−1} wndn.

In another variant of 3dsm, every agent has consistent preferences. In 3dsm, it is possible
for some man mi to rank wjdk higher than w`dk yet also rank w`dp higher than wjdp. An
instance where some agent’s preference lists has this property is called inconsistent. To
enforce consistency, Huang constructed a new kind of preference structure, where each agent
has two simple lists that rank agents from the other two sets [7]. For example, each man
mi would have a simple list with strict preferences over W and another over D. Then, these
simple lists are combined to make a preference poset as shown in the following example.
For man mi and pairs wjdk and w`dp, we have that wjdk precedes w`dp on mi’s preference
poset only if wj ranks at least as high as w` and dk at least as high as dp in the simple lists.
Otherwise, they are incomparable.

A broader example of such a scheme is the Precedence by Ordinal Number (pon) scheme
[7]. In pon, each agent strictly ranks the agents of a single set for each simple list. The
preference poset is simply constructed by summing the ranks of the simple lists of the
elements in each pair. For some man mi and woman wj, we define rank(mi, wj) to be the
position of wj on mi’s simple list, where the most preferable pair is rank n and the least
preferable is rank 1. Similarly, for a dog dk, rank(mi, dk) is the rank of dk on mi’s preference
list. This is defined analogously for the women and dogs. We define the partial order on the
preference poset such that for any i, j, k, `, p ∈ [n],

(wj, dk) �mi
(w`, dp)

is equivalent to

rank(mi, wj) + rank(mi, dk) ≤ rank(mi, w`) + rank(mi, dp).

This can be generalized to a setting where agents give ratings instead of rankings, where
a higher rating is more preferable [7]. This means that agents are able to provide the
same rating (causing a tie) to two or more agents on their simple list. We call this setting
Precedence by Ordinal Number with Rankings (pon-rate). In this paper, we allow ratings
of any positive integer value.

In these settings, agents can be indifferent between two different pairs of partners, which
allows for a variety of “strengths” of stability. For a triple t and agent a, let t(a) be the pair
that a is partnered with in t. Given an instance of pon and a triple t, we define different
levels of stability based on their corresponding blocking triples.

• Weakly Stable: triple t is a blocking triple if for each a ∈ t, we have M(a) ≺a t(a) (this
is equivalent to a blocking triple in 3dsm).

• Strongly Stable Matching: triple t is a blocking triple if there are distinct a, b ∈ t such
that M(a) ≺a t(a) and M(b) ≺b t(b), while for the final c ∈ t, M(c) �c t(c).
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• Super-Stable Matching: triple t is a blocking triple if for some a ∈ t M(a) ≺a t(a),
while for the remaining b, c ∈ t, M(b) �b t(b) and M(c) �c t(c).

• Ultra-Stable Matching: triple t 6∈ M is a blocking triple if for each a ∈ t, t(a) �a M(a).
The Three Dimensional Matching Problem (3dm) is an NP-complete decision problem

that was used to show that the problem of deciding whether a given instance of 3dsm admits
a stable matching is NP-complete [11]. A three-dimensional matching is defined as follows.
Let A, B, and D be finite, disjoint sets and T ⊆ A × B × D. A set M ⊆ T is a matching
if all triples in M are disjoint. 3dm is the decision problem where the input is an integer
k and T ⊆ A × B × D, and the problem is to determine whether there exists a matching
M ⊆ T such that |M | ≥ k. This problem is still NP-complete when k = |A| = |B| = |D|
[10]. When we refer to 3dm, we will refer to this restriction.

2.3 Popularity in Stable Marriage
For an instance of 3dsmt and two matchings M and M ′, we define P (M, M ′) to be the
set of agents who strictly prefer M to M ′. Matching M is more popular than M ′ if more
agents prefer M to M ′ than prefer M ′ to M , meaning |P (M, M ′)| > |P (M ′, M)|. Recall that
if ties are allowed, then agents can be assigned different partners in M and M ′ while still
being indifferent between them (meaning that they are in neither P (M ′, M) nor P (M, M ′)).
Matching M is popular if there is no matching M ′ that is more popular than M , and M is
strongly popular if it is more popular than every matching M ′ 6= M . We define

∆(M, M ′) = |P (M, M ′)| − |P (M ′, M)|,

so M is popular if only if for all matchings M ′ we have that ∆(M, M ′) ≥ 0, and M is
strongly popular if and only if for all matchings M ′ 6= M we have that ∆(M, M ′) > 0.
These definitions are applied in exactly the same way to sm, 3dsm, pon, and pon-rate,
based on the construction of the preferences for the agents.

The Gärdenfors [6] first describes aspects of the relationship between stability and pop-
ularity in sm.

Theorem 1. For instances of sm, all stable matchings are popular, and all strongly popular
matchings are stable.

Next, Biró, Irving, and Manlove [1] present the following algorithmic result.

Theorem 2. There exists a polynomial-time algorithm to test whether a matching M in an
instance of sm is popular.

Since stable matchings can be found in polynomial time and always exist in instances of
sm, from Theorem 1 we find that popular matchings can also be found in polynomial time
[5]. However, this reasoning cannot be applied to strongly popular matchings, which led
Biró, Irving, and Manlove [1] to leave the complexity of finding a strongly popular matching
as an open problem, which was addressed by Huang and Kavitha [9], leading to the following
result.

Theorem 3. There exists a polynomial-time algorithm to find a strongly popular matching
in an instance of sm or determine that no such matching exist.
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2.4 Our Contributions
First, we determine whether Theorem 1 generalizes to 3dsm and its variants. We found that,
except in some cases with few agents, there are instances that admit stable matchings that
are not popular and instances that admit strongly popular matchings that are not stable.
We prove that this is the case in 3dsm even with the restriction to lexicographic preferences.
Furthermore, we show that this is the case in pon and pon-rate, even with different levels
of stability.

To address Theorem 2, we define pop-test-3dsm to be the decision problem “given
matching M in an instance of 3dsm, is M popular?” We give two graph-theoretic formu-
lations for popularity testing in 3dsm in order to aid in determining its complexity. Since
Theorem 1 does not always hold in instances of 3dsm, we define pop-3dsm to be the de-
cision problem “given an instance I of 3dsm, does there exist a popular matching in I?”
The decision problems pop-3dsmt and pop-pon-rate are defined analogously. Finally, we
give a reduction from 3dm to pop-3dsmt to prove that it is NP-hard, further implying that
pop-pon-rate is NP-hard.

3 Structural Results
This section details the extent that stable matchings are popular and strongly popular match-
ings are stable in variants and restrictions of 3dsm. We show that for most conceivable
settings it is not the case that all stable matchings are popular and all strongly popular
matchings are stable.

3.1 Three-Dimensional Stable Marriage
Proposition 1. For an instance of 3dsm with size n = 2. If the instance admits a strongly
popular matching M∗, then M∗ is stable.

Proof. We prove the contrapositive. Since there are two agents per set, for an agent ai ∈
M ∪ W ∪ D let āi be the other agent of the same set, so m̄1 = m2. Let M be a matching
that is not stable. Let miwjdk be a blocking triple for M . Then M ′ = {miwjdk, m̄iw̄j d̄k}
is at least as popular as M . This is because, by the definition of a blocking triple, mi, wj,
and dk prefer the blocking triple to M . Even if the rest (m̄i, w̄j, and d̄k) of the agents prefer
M , there is an equal number of agents who prefer M to M ′ and who prefer M ′ to M . Thus
M is not strongly popular, meaning that for instances where n = 2, all strongly popular
matchings are stable.

However, Proposition 1 does not extend past two agents per group. In fact, even under
the restriction of lexicographic preferences, we can find such an example.

Lemma 1. Let I be the instance described in Figure 1, then

M = {m2w1d3, m1w3d2, m3w2d1}

is strongly popular but not stable.
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m1 w1d1 w1d2 w1d3 w3d1 w3d2 w3d3 w2d1 w2d3 w2d2
m2 w1d2 w1d1 w1d3 w3d2 w3d3 w3d1 w2d3 w2d2 w2d1
m3 w2d1 w2d2 w2d3 w3d2 w3d3 w3d1 w1d3 w1d1 w1d2
w1 m1d1 m1d3 m1d2 m2d1 m2d3 m2d2 m3d2 m3d3 m3d1
w2 m3d1 m3d2 m3d3 m2d2 m2d3 m2d1 m1d2 m1d3 m1d1
w3 m3d2 m3d1 m3d3 m1d2 m1d1 m1d3 m2d2 m2d1 m2d3
d1 m2w3 m1w1 m1w3 m3w2 m2w2 m3w3 m2w1 m3w1 m1w2
d2 m3w1 m1w3 m3w3 m2w2 m1w1 m2w1 m1w2 m3w2 m2w3
d3 m2w1 m3w3 m2w2 m1w1 m3w1 m2w3 m1w3 m1w2 m3w2

Figure 1: An instance of 3dsm restricted to lexicographic preferences with a strongly popular
matching that is not stable.

Proof. First we will show that M is strongly popular in I. Suppose for the sake of contra-
diction that there exists M ′ such that M is not more popular than M ′. Let A be the set of
agents that prefer M ′ to M

Case 1: Suppose M ∩ M = ∅, then we must show that |A| < 5. We know that no agent
who is matched with their first choice in M is in A, so A ⊆ {m1, m2, w1, w3, d1, d2}.

• If m2 ∈ A, then either m2w1d2 ∈ M ′ or m2w1d1 ∈ M ′. If m2w1d2 ∈ M ′ then w1, d2 6∈ A,
so m2 6∈ A.

• Now we have that A ⊆ {m1, w1, w3, d1, d2}. If d2 ∈ A then m3w2d2 ∈ M ′, so w1 6∈ A,
meaning that M is more popular than M ′. By our assumption d2 6∈ A.

Thus, |A| ≤ 4, so if the matchings are disjoint then M is more popular than M ′.
Case 2: Suppose M ∩ M ′ = {t}. We must show that |A| ≤ 2.

• If t = m2w1d3 then A ⊆ {m1, w3, d1, d2}. Then if d2 ∈ A we have m3w1d1 ∈ M ′, which
is a contradiction, so d2 6∈ A. Now, if m1 ∈ A, then m1 must be paired with w3, but
they cannot be paired and prefer M ′

• If t = m1w3d2, then A ⊆ {m2, w1, d1}, but m2 cannot be paired with w1 or w3 and still
prefer M ′ to M .

• If t = m3w2d1, then A ⊆ {m1, m2, w1, w3, d2}.

– If m2 ∈ A then m2w1d2 ∈ M ′. Then if m1w3d3 ∈ M ′ we have M = M ′, so
A ⊆ {m1, w1, w3, d2}.

– If w3 ∈ A then w3 is paired with m3, so w3 6∈ A.
– We have A ⊆ {m1, w1, d2}. If d2 ∈ A then m3w1d2 ∈ M ′, which is false by the

construction of t.

Thus M is strongly popular.
The matching M is not stable because m1w1d1 is a blocking triple.
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m1 w1d1 w1d2 w2d2 w2d1
m2 w2d2 w2d1 w1d1 w1d2
w1 m2d2 m2d1 m1d2 m1d1
w2 m1d1 m1d2 m2d1 m2d2
d1 m1w2 m2w1 m1w2 m2w2
d2 m2w1 m2w2 m1w1 m1w2

Figure 2: An instance of 3dsm restricted to lexicographic preferences with a stable matching
that is not popular.

Likewise, we give an example of an instance with lexicographic preferences that admits
a stable matching that is not popular.

Lemma 2. For the instance of 3dsm described in Figure 2 and matching M = {m1w1d1, m2w2d2},
the matching M is stable but not popular.

Proof. Let M ′ = {m2w1d2, m1w2d1}. Because in M each man m is paired with their first
choice woman w and dog d, there cannot be a blocking triple, since that requires m to prefer
another pair. Thus M is stable. Similarly, in M ′ every woman w′ is paired with their first
choice couple of m′ and d′, so there cannot be a blocking triple, meaning that M ′ is stable.

In M , each man is paired with his first choice, and each woman are paired with her
last choice. Similarly, in M ′ each woman is paired with her first choice, while each man is
paired with his last choice. Thus, when considering only the men and women, there are an
equal number of agents who prefer the other matching. However, d1 and d2 both prefer M ′,
since the couple they are paired with is their first choice in M ′ while it is not for M . Thus
P (M ′, M) = {w1, w2, d1, d2} while P (M, M ′) = {m1, m2}, so M is not popular.

From Lemmas 1 and 2 we obtain the following result.

Theorem 4. There are instances of 3dsm, even under the restriction lexicographic prefer-
ences, where the properties mentioned in Theorem 1 do not hold. Namely, there are instances
that admit strongly popular matchings that are not stable, and there are instances that admit
stable matchings that are not popular.

3.2 Precedence by Ordinal Number
Because pon introduces stronger versions of stability, it is natural to investigate the rela-
tionship between popularity and these different notions of stability.

Lemma 3. Let I be the instance of pon described in Figure 3, the matching

M = {m2w1d2, m1w2d1}

is ultra stable but not popular.
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m1 w1 w2
d2 d1

m2 w2 w1
d1 d2

w1 m1 m2
d2 d1

w2 m1 m2
d1 d2

d1 m1 m2
w1 w2

d2 m2 m1
w1 w2

Figure 3: An instance of pon that admits an ultra-stable matching that is not popular.

Proof. The men m1 and m2 are paired to their first-choice partners in M (of which there is
only one combination of women and dogs), so for any t = (m, w, d) ∈ (M × W × D) \ M ,
man m strictly prefers M(m) to t(m). Thus, M is ultra stable.

Consider M ′ = {m2w1d1, m1w2d2}. We have P (M, M ′) = {m1, m2} while

P (M ′, M) = {w1, d2, w2},

so M is not popular.

Since we have shown there exists an ultra stable matching that is not popular, the same
follows for weakly stable, strongly stable, and super-stable matchings.

Lemma 4. For the instance of pon described in Figure 4. The matching

M = {m1w1d1, m2w2d2, m3w3d3}

is strongly popular but not weakly stable.

Proof. Let M ′ be a matching that is not M . Suppose M and M ′ are disjoint. Then

{m1, m3, w1, w2, d2, d3} ⊆ P (M, M ′),

since those are the agents that are matched with their first choice partners in M . Thus, M
is more popular than M ′.

If M and M ′ have one triple in common, then |P (M, M ′)| ≥ 4 since four agents not in
the triple are paired with their first choice. Then |P (M ′, M)| ≤ 2, so M is more popular
than M ′. Thus, M is strongly popular.

The matching M is not even weakly stable since m2w3d1 is a blocking triple.

We have shown that there is an instance of pon that admits a strongly popular matching
that is not weakly stable, so we know that Lemma 4 holds for strongly stable, super-stable,
and ultra-stable matchings as well.
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m1 w3 w2 w1
d2 d3 d1

m2 w2 w1 w3
d3 d1 d2

m3 m1 w2 w3
d1 d2 d3

w1 m3 w2 w1
d2 d3 d1

w2 m1 w3 w2
d1 d3 d2

w3 m1 w3 w2
d3 d2 d1

d1 m1 m3 m2
w1 w3 w2

d2 m3 m1 m2
w3 w1 w2

d3 m2 m1 m3
w2 w1 w3

Figure 4: An instance of pon that admits a strongly popular matching that is not weakly
stable.

Theorem 5. There exists instances of pon where the properties mentioned in Theorem
1 do not hold, even when replacing traditional (weak) stability with strong, super, or ultra
stability. That is, for each definition of stability, there are instances that admit strongly
popular matchings that are not stable, and there are instances that admit stable matchings
that are not popular.

4 Algorithmic Results
The primary algorithmic problem we aim to solve is determining the hardness of pop-3dsm.
For this reason, we also study the problem of popularity testing, called pop-test-3dsm, since
if pop-test-3dsm is in P, then pop-3dsm is in NP. This is because a popular matching
serves as a certificate for popularity, and the popularity test could be an efficient verifier.
We show the equivalence of pop-test-3dsm to two graph-theoretic problems, and prove the
hardness of pop-3dsmt, the generalized version of pop-3dsm that allows ties in preference
lists.

4.1 Popularity Testing
Let M be a matching in an instance of 3dsm. Define HM = (V, E) to be a hypergraph such
V = M ∪ W ∪ D and E = M × W × D. For e ∈ E, let wt(e) denote the weight of e. For
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a ∈ M ∪ W ∪ D and b, a pair on a’s preference list, let

voteM(a, b) =


1 if a prefers b to M(a),
0 if b = M(a), and
−1 if a prefers M(a).

Now, for each e = (m, w, d) ∈ E we let wt(e) = ∑
a∈e voteM(a, e(a)). For some matching

M ′ ⊆ E, the weight of the matching in HM is denoted wt(M ′) = ∑
t∈M ′ wt(t). There is a

m1w1d1

0

m1w1d2

-1

m1w2d1

1

m1w2d2

1

m2w1d1-1

m2w1d2

1

m2w2d1 1

m2w2d2

0

Figure 5: The graph GM from the instance of 3dsm in Figure 2, with matchings M and M ′

colored red and green, respectively.

polynomial-time test for popularity in smi [1]. We give a similar structure for popularity
testing in 3dsm.

Theorem 6. For an instance of 3dsm and hypergraph HM , the matching M is popular in
I if and only if M is a maximum-weight perfect matching of HM .

Proof. For any perfect matchings M1 and M2, we have ∆(M1, M2) = |P (M1, M2)|−|P (M2, M1)|
and ∆(M1, M2) > 0 if and only if M1 is more popular than M2. Let M ′ be a perfect matching
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in HM . We have

wt(M ′) = wt(M ′ \ M) + wt(M ′ ∩ M)
= wt(M ′ \ M)
=

∑
a∈M∪W∪D

voteM(a, M ′(a))

= |P (M ′, M)| − |P (M, M ′)|
= ∆(M ′, M),

so if wt(M ′) > 0, then M is not popular. On the other hand, if M is not popular, then there
exists a perfect matching M∗ such that ∆(M∗, M) > 0, meaning that M is not a maximum-
weight perfect matching. Thus, M is popular if and only if M is a maximum-weight perfect
matching of HM .

It is unknown whether this problem is polynomial-time solvable, so we give another
formulation for pop-test-3dsm on graphs.

Define GM = (V, E) such that V = M × W × D and E = {{u, v} : u ∩ v 6= ∅, ∀u, v ∈ V }.
For v ∈ V , let wt(v) = ∑

a∈v vote(a, M(a)) and for M ′ ⊆ V let wt(M ′) = ∑
t∈M ′ wt(t).

Equivalently, V represents the edge set of HM , and E connects non-disjoint triples.

Theorem 7. A matching M in an instance of 3dsm is a maximum weight n-independent
set of GM if and only if M is popular.

Proof. By the definition of a 3dsm matching, |M | = n and M is an independent set in GM .
Let M ′ be an independent set of size n of GM . The set M ′ is a matching because it assigns
all agents exactly once. By the argument with HM , we know that wt(M ′) = ∆(M ′, M), so
wt(M ′) > 0 implies that M ′ is more popular than M . Then there is a matching M∗ such
that ∆(M∗, M) > 0. Thus, in GM we have that wt(M∗) > 0, so M is not a maximum-weight
independent set of size n.

As an example to explain the intuition behind the formulation, Figure 5 shows GM for
the instance of 3dsm in Figure 2, where

M = {m1w2d1, m2w1d2}

and
M ′ = {m1w2d1, m1w2d1}.

We can tell that M is not popular because M ′ is an independent set with weight greater
than the weight of M in GM .

4.2 NP-Hardness in the Case With Ties
We prove that pop-3dsmt is NP-hard by providing a polynomial reduction from 3dm. First,
we discuss a motivating example that we use as a gadget. This instance has the interesting
property that it admits no popular matching, which we use in our reduction.

Lemma 5. The instance of 3dsmt described in Figure 6 does not admit a popular matching.
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m1 w1d1 w1d2 w2d1 w2d2
m2 w1d1 w1d2 w2d1 w2d2
w1 m1d1 m1d2 m2d1 m2d2
w2 m2d1 m1d2 m1d1 m2d2
d1 m2w1 m1w2 m1w1 m2w2
d2 m2w1 m2w2 m1w1 m1w2

Figure 6: An instance of 3dsmt with no popular matching.

Proof. Let
M1 = {m1w1d1, m2w2d2}

M2 = {m1w1d2, m2w2d1}

M3 = {m1w2d1, m2w1d2}

M4 = {m1w2d2, m2w1d1}

We have

• M3 is more popular than M1 since P (M3, M1) = {m2, w2, d1, d2},

• M1 is more popular than M2 since P (M1, M2) = {m1, w1, d1, d2},

• M4 is more popular than M3 since P (M4, M3) = {m2, w1, w2, d1}, and

• M2 is more popular than M4 since P (M2, M4) = {m1, w1, w2, d2}.

Since for every matching M there is an M ′ that is more popular than M , there is no
popular matching.

...
ai T (ai) (B × D) \ T (ai) B × {δ} {β} × D βδ . . .
...
...
bi T (bi) (A × D) \ T (bi) A × {δ} {α} × D αδ . . .
...
...
di T (di) {α} × B A × {β} (A × B) \ T (di) αβ . . .
...
α B × D B × {δ} {β} × D βδ . . .
β {α} × D A × {δ} A × D αδ . . .
δ {α} × B αβ A × B A × {B} . . .

Figure 7: The mapping from instances of 3dm to instances of 3dsmt.
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In order to understand how this example functions in our reduction, we first give the
mapping between the two problems. To simplify notation, we briefly abandon using M, W ,
and D for the men, women, and dogs. For an instance I = (A, B, D, T ) of 3dm, we define I ′

to be an instance of pop-3dsmt with sets A′ = A ∪ {α}, B′ = B ∪ {β}, and D′ = D ∪ {δ}.
As a result of our simplified notation, we make no distinction between elements of A′, B′,
and D′ and their corresponding elements in I. Finally for any e ∈ A ∪ B ∪ D, we let T (e) be
the set of partners of e in T , and “. . . ” in the preference lists refers to a fixed but arbitrary
preference of the remaining pairs.

Lemma 6. For an instance I = (A, B, D, T ) of 3dm, let I ′ be the result of the mapping
described in Figure 7 with corresponding sets A′, B′, and D′. If I admits a perfect matching
M , then M ′ = M ∪ {αβδ} is a popular matching for I ′.

Proof. If M is perfect, then all of A, B, and D are matched to their first choice pair in I ′.
Suppose some matching M∗ of I ′ does not match elements of A, B, and D corresponding
to a perfect matching with respect to T . Then there exists a ∈ A, b ∈ B, and c ∈ C that
are matched to triples not in T , so a, b, and c prefer M ′ to M∗. Then, the only agents that
could be better off in M∗ are α, β, and δ. Thus, ∆(M ′, M∗) ≥ 0, meaning that M ′ is at
least as popular as any matching that does not correspond to a perfect matching of M .

Suppose M∗ does correspond to a perfect matching of I, meaning that all of A, B, and
D are matched in the triples of T . Then all elements of A, B, and D are indifferent between
M∗ and M ′ since they are matched to their first choice in both. Also, α, β, and δ have the
same partners in M∗ as they do in M ′, so ∆(M ′, M∗) = 0.

Lemma 7. For an instance I of 3dm and its corresponding 3dsmt instance I ′, if there is
no perfect matching in T , then there is no popular matching in I ′.

Proof. We show that for each matching M∗ that matches k triples in T for 0 ≤ k ≤ n − 1,
there exists a matching M ′ that is more popular than M∗. Let M be a matching of size
k of T and let M be an arbitrary matching of the elements of A′, B′, and D′ that are not
accounted for in M . Let M∗ = M ∪ M . Then, following the motivating example:

1. If αβδ ∈ M∗, then for any aibjd` ∈ (A×B×D)\T we have M ′ = (M∗\{αβδ, aibjd`})∪
{aiβd`, αbjδ} is more popular than M∗.

2. If there are i, j, ` ∈ [n] such that αβd`, aibjδ ∈ M∗ then M ′ = (M∗ \ {αβd`, aibjδ}) ∪
{αβδ, aibjd`} is more popular than M∗.

3. If there are i, j, ` ∈ [n] such that aiβd`, αbjδ ∈ M∗ then M ′ = (M∗ \ {aiβd`, αbjδ}) ∪
{aiβδ, αbjd`} is more popular than M∗.

4. If there are i, j, ` ∈ [n] such that aiβδ, αbjd` ∈ M∗ then M ′ = (M∗ \ {aiβδ, αbjd`}) ∪
{aibjδ, αβd`} is more popular then M∗.

Therefore, a matching that contains k triples from T is not popular. If I does not admit a
perfect matching, then M cannot match n elements of T , so every matching in I ′ is accounted
for.

13



Theorem 8. The decision problem pop-3dsmt is NP-hard

Proof. For any instance I of 3dm and the corresponding I ′ of 3dsmt, if there exists a perfect
matching of T , then there is a popular matching in I ′. Namely, for a perfect matching M ⊆ T ,
the matching M ′ = M ∪ {αβδ} is popular. Finally, we showed that if there is no perfect
matching in I, then there is no popular matching in I ′. Thus I admits a perfect matching if
and only if I ′ admits a popular matching, so pop-3dsmt is NP-hard.

5 Concluding Remarks
We have shown that in 3dsm and its variants, certain properties of popularity from two-sided
stable marriage do not hold. We have also given graph-theoretic formulations for popularity
testing and have proven that pop-3dsmt is NP-hard. We intend to further investigate this
formulation to better understand the complexity of both pop-test-3dsm and pop-3dsm.
It is important to answer the question of whether there is a polynomial-time algorithm for
popularity testing, since the existence of such an algorithm would mean that pop-3dsm is
in NP. If popularity testing is NP-hard, then pop-3dsm may be NP-complete or strictly
NP-hard.
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