
Sustained Space and Cumulative
Complexity Trade-offs for Data-

Dependent Memory-Hard Functions

Jeremiah Blocki

Blake Holman

Motivation: Password Storage

2

Username

bholman

+

bholman, 123456

SHA1(12345689d978034a3f6)=85e23cfe
0021f584e3db87aa72630a9a2345c062

Hash

85e23cfe0021f58
4e3db87aa72630
a9a2345c062

Salt

89d978034a3f
6

Offline Attacks: A Common Problem

• Password breaches at major companies have affected millions billions
of user accounts.

A Dangerous Problem

$2,400 on
Amazon

Can we increase guessing costs for the attacker?

Goal: Moderately Expensive Hash Function

Fast on PC and
Expensive on ASIC?

Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs

vs.

• Goal: force attacker to lock up large amounts of memory for duration
of computation
→Expensive even on customized hardware

Types of Memory-Hard Functions

• Data-Independent Memory-Hard Functions (iMHFs)
• Memory access pattern during evaluation is independent of the input

• Data-Dependent Memory-Hard Functions (dMHFs)
• Memory access pattern during evaluation may depend on the input

• No restrictions as with iMHFs

Data-Independent vs. Data-Dependent MHFs

• Data-Independent:
• Side-channel resistant

• Weaker memory hardness

• Data-Dependent:
• Possible side-channel leakage

• Simple constructions

• Provably better memory hardness

Why Data-Dependent MHFs?

• Uses where leakage isn’t a concern
• Securing blockchains

• Litecoin/Dogecoin

• Combine with iMHFs
• Data-independent phases give baseline memory hardness

Evaluating iMHF (fG,H)

2

3

4
Output: fG,H (pwd,salt)= L4

Input: pwd, salt

𝐿3 = 𝐻(𝐿2, 𝐿1)𝐿1 = 𝐻(𝑝𝑤𝑑, 𝑠𝑎𝑙𝑡)

Defined by
• H: 0,1 2𝑘 → 0,1 𝑘 (Random Oracle)
• DAG G (encodes data-dependencies)

1

Evaluating an iMHF (pebbling)

Pebbling Rules : 𝑃=P1,…,Pt⊂ 𝑉 s.t.

• Pi+1⊂ Pi ∪ 𝑥 ∈ 𝑉 parents 𝑥 ⊂ Pi+1 (need dependent values)

• n∈ Pt (must finish and output Ln)

1
2

3

4 Output: L4Input:

pwd, salt

𝐿3 = 𝐻(𝐿2, 𝐿1)𝐿1 = 𝐻(𝑝𝑤𝑑, 𝑠𝑎𝑙𝑡)

1

Evaluating iMHF (fG,H) dMHF(fG,H)

1
2

3

4
Output: fG,H (pwd,salt)= L4

Input: pwd, salt

𝐿4 = 𝐻(𝐿2, 𝐿𝑟(4))𝐿1 = 𝐻(𝑝𝑤𝑑, 𝑠𝑎𝑙𝑡)

Defined by
• H: 0,1 2𝑘 → 0,1 𝑘 (Random Oracle)
• DAG Distribution 𝔾 (Dynamic Pebbling Graph)
• DAG G~𝔾
• Random edges appear

1

Data-Dependent Memory Hard Functions

• Each random edge 𝑟 𝑖 , 𝑖 is chosen using random label of its
predecessor 𝑖 − 1.

• Example: 𝑟 4 = 𝐿3mod 2 = 𝐻 𝐿2 mod 2
• Upon pebbling node 3, we discover the edge (1,4)

1
2

3

4
Output: fG,H (pwd,salt)= L4

Input: pwd, salt

𝐿4 = 𝐻(𝐿2, 𝐿𝑟(4))𝐿1 = 𝐻(𝑝𝑤𝑑, 𝑠𝑎𝑙𝑡)

1

Case Study: Scrypt

1 2 3 4 5 6 7 8 9 10

• First half line graph
• Second half has dynamic edges coming from the first half
• N=5
• Each node 𝑖 ≥ 𝑁/2 has a random edge 𝑟(𝑖) from the first half
• Here, 𝐿𝑖 = 𝐻(𝐿𝑖−1, 𝐿𝐿𝑖−1 𝑚𝑜𝑑𝑁/2)

Scrypt: Naïve Pebbling Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: pebble as many nodes as possible
• Never take any pebbles of the graph “just in case”

Scrypt: Naïve Pebbling Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: pebble as many nodes as possible
• Never take any pebbles of the graph “just in case”

Scrypt: Naïve Pebbling Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: pebble as many nodes as possible
• Never take any pebbles of the graph “just in case”

Scrypt: Naïve Pebbling Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: pebble as many nodes as possible
• Never take any pebbles of the graph “just in case”

Scrypt: Naïve Pebbling Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: pebble as many nodes as possible
• Never take any pebbles of the graph “just in case”

Scrypt: Naïve Pebbling Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: pebble as many nodes as possible
• Never take any pebbles of the graph “just in case”

Scrypt: Naïve Pebbling Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: pebble as many nodes as possible
• Never take any pebbles of the graph “just in case”

Scrypt: Naïve Pebbling Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: pebble as many nodes as possible
• Never take any pebbles of the graph “just in case”

Scrypt: Naïve Pebbling Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: pebble as many nodes as possible
• Never take any pebbles of the graph “just in case”

Scrypt: Naïve Pebbling Strategy

1 2 3 4 5 6 7 8 9 10

• Question: How memory hard is Scrypt?

Measuring Cost Attempt 1:
Cumulative Complexity

1 2 3 4 5 6 7 8 9 10

• Idea: we want to capture how the memory is held-up during the
computation

• 𝑐𝑐 𝑃 = σ 𝑃𝑖
• 𝑐𝑐 𝐺 = min𝑃∈𝒫{𝑐𝑐(𝑃)}
• Strategy 𝑆 is an algorithm which outputs a pebbling 𝑆 𝐺 = 𝑃 for G~𝔾
• 𝑐𝑐 𝔾 = min𝑆∈𝒮{𝔼[𝑐𝑐 𝑆(𝐺)]}
• Naïve pebbling strategy:

• Cumulative Complexity 𝑂(𝑁2) is always possible

Cumulative Complexity (CC): iMHFs vs. dMHFs

1 2 3 4 5 6 7 8 9 10

• Static pebbling graphs (iMHFs) have weaker CC guarantees than dynamic
pebbling graphs (dMHFs)

• Any static DAG has cumulative complexity 𝑂
𝑁2 log log 𝑁

𝑁
[ABP17]

• It’s easy to construct a dynamic pebbling graph (dMHF) with
cumulative complexity 𝛺 𝑁2

Does Cumulative Complexity Capture
Memory Hardness?

1 2 3 4 5 6 7 8 9 10

• Scrypt has maximal cumulative complexity 𝛺 𝑁2 ! [ACP+17]
• Unfortunately, cumulative complexity doesn’t always imply

high memory usage

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

1 2 3 4 5 6 7 8 9 10

• Idea: only keep a minimal amount of pebbles
• CC is still 𝑂 𝑁2 but we used 𝑂(1) space!

Recall: Memory Hard Function (MHF)

• Intuition: computation costs dominated by memory costs

vs.

• Goal: force attacker to lock up large amounts of memory for duration
of computation
→Expensive even on customized hardware

Memory Cost Attempt 2:
Sustained Space Complexity (SSC)
• 𝑠-Sustained Space: the number of rounds in which at least 𝑠

pebbles on the graph [ABP17]
• 𝑠-SSC 𝑃 = σ {𝑖: 𝑃_𝑖 ≥ 𝑠}
• Stronger than CC

• If a pebbling with 𝑆-SSC of 𝑇 has CC at least S𝑇
• Scrypt has 𝑠-Sustained Space of 0 for any 𝑠 > 2
• Is there a family of pebbling graphs which requires 𝛺(𝑁)

pebbles for 𝛺(𝑁) steps?

1 2 3 4 5 6 7 8 9 10

Sustained Space: iMHFs vs. dMHFs

• No, every pebbling graph (dynamic or otherwise) has a
strategy that sustains O ൗ𝑁 log 𝑁 for some number (maybe
exponentially many) steps [HPV77]

• Idea: let’s try to construct graphs where low memory
attackers have huge CC

This work: CC/SSC Trade-Offs

• Goal: For some 0 < 𝑝, ℓ < 1, construct a (dynamic) pebbling
graph such that any strategy either sustains at least 𝒑𝑵
pebbles for at least ℓ𝑵 steps, or has CC 𝜴 𝑵𝟑

• Why do we need dMHFs and dynamic pebbling graphs?
• For any 0 < 𝑐 < 1 there’s a 0 < 𝑐′ < 1 such that any static graph

on 𝑁 nodes can be pebbled using at most 𝑐𝑁 pebbles for 𝑐′𝑁
steps [LenTar79]

• We hope that dynamic edges can leave a low-memory attacker
unprepared to answer the challenge

CC/SSC Trade-offs for Dynamic Pebbling
Graphs
• We examine four dynamic pebbling graph families
• Practicality: graphs having constant indegree is necessary for

their MHFs to be usable in practice

Dynamic Graph Indegree Sustained Space
(over 𝛺 𝑁 steps)

Cumulative Cost

Scrypt [Per09] 2 2 𝑂 𝑁2

Hybrid EGS [EGS75] 𝑂 log𝑁 𝛺 𝑁 𝛺 𝑁3

Argon2id
[BDK2015]

2 𝛺 𝑁1−𝜖 𝛺 𝑁2+2𝜖

Hybrid DRSample
[ABH17]

3 𝛺 ൗ𝑁 log𝑁 𝛺 ൗ𝑁3

log𝑁

Our Construction 2 𝜴 𝑵 𝜴 𝑵𝟑−𝝐

This work: CC/SSC Trade-Offs

• General construction: have dynamic edges coming from the
first half of the graph which is
• Highly connect and has high cumulative complexity

1 2 3 4 5 6 7 8 9 10

This work: CC/SSC Trade-Offs

• General construction: have dynamic edges coming from the
first half of the graph which is
• Highly connect and has high cumulative complexity

1 2 3 4 5 6 7 8 9 10

This work: CC/SSC Trade-Offs

• General construction: have dynamic edges coming from the
first half of the graph which is
• Highly connect and has high cumulative complexity

• If a strategy has few pebbles on the graph

1 2 3 4 5 6 7 8 9 10

This work: CC/SSC Trade-Offs

• General construction: have dynamic edges coming from the
first half of the graph which is
• Highly connect and has high cumulative complexity

• If a strategy has few pebbles on the graph
• It will have to pebbles a large proportion of the first half,

incurring high CC

1 2 3 4 5 6 7 8 9 10

Ingredient 1: ST-Robust Graphs [BC21]

• Maximally ST-Robust Graph 𝑆𝑇
• 𝑁 inputs, 𝑁 outputs
• For any 𝑘 and 𝐷 ⊆ 𝑉 of size 𝑘, there are paths from 𝑛 − 𝑘

inputs each to 𝑛 − 𝑘 outputs in 𝑆𝑇 − 𝐷
• Even after removing many nodes, there are still paths from

many inputs to many outputs

Ingredient 2: Depth-robustness

• A graph 𝐺 = (𝑉, 𝐸) is (𝒆, 𝒅)-depth robust if for any 𝑆 ⊆ 𝑉
with 𝑆 , 𝐺 − 𝑆 has depth at least 𝑑.

• If 𝐺 is (𝑒, 𝑑)-depth robust, then 𝑐𝑐(𝐺) ≥ 𝑒𝑑 [ABP17]

1 2 3 4 5 6 7 8 9 10

Ingredient 2: Depth-Robust Inputs

• Overlay an (𝛺 𝑁 , 𝑑)-depth robust graph on the inputs to the
ST-robust graph

• Pebbling many inputs takes CC 𝛺 𝑁𝑑
• How can we make a low-memory attacker repebble the inputs

many times?

Ingredient 3: A Line Graph with Dynamic
Edges
• A line graph on 𝑁 nodes
• Random edges from each node of the line graph to each node

in the outputs
• If an attacker doesn’t have many pebbles on the graph, then

they’ll likely not have a pebble on 𝑟(𝑖)
• There are likely many paths to 𝑟 𝑖 from many inputs
• Each time this happens it costs CC Ω(𝑁𝑑)
• If the strategy is low memory, then this happens

Ω(𝑁) times, resulting in CC Ω 𝑁2𝑑

Our Construction: Instantiations

• These dynamic pebbling graphs are constructed
with the parameterized depth-robust graph over
the inputs

• We use the Grates construction, which is
(Ω 𝑁) , Ω(𝑁1−𝜖) -depth robust [Sch83]

• Result: Any pebbling strategy either sustains 𝑝𝑁
pebbles for ℓ𝑁 steps, or has CC Ω 𝑁3−𝜖

Conclusion and Open Problems

• Showed that some current/practical MHFs have high
SSC/CC tradeoffs

• Theoretical construction with almost maximal trade-offs
• Open Problem: pebbling reduction for dMHFs?
• Is it possible to have a constant indegree graph where any

strategy must sustain Ω 𝑁 pebbles for Ω 𝑁 or have CC
Ω 𝑁3

