Sustained Space and Cumulative
Complexity Trade-offs for Data-
Dependent Memory-Hard Functions

Jeremiah Blocki
Blake Holman

Motivation: Password Storage

bholman, 123456 —>
E

bholman 89d978034a3f 85e23cfe0021f58
6 4e3db87aa72630
a9a2345c062

SHA1(12345689d9780342316)=85e23cfe

g 0021f584e3db87aa72630a9a2345c062
m +

Offline Attacks: A Common Problem

* Password breaches at major companies have affected milliens billions

TECH

Yahoo Triples Estimate of Breached Accounts to 3 Billion

Company disclosed late last year that 2013 hack exposed private information of over 1 billion users

By Robert McMillan and Ryan Knutson

.
ASl Updated Oct. 3, 2017 9:23 p.m. ET C'TRlxa
" .

M A massive data breach at Yahoo in 2013 was far more extensive than previously disclosed,
4

Life is affecting all of its 3 billion user accounts, new parent company Verizon Communications

Inc. said on Tuesday.

The figure, which Verizon said was based on new information, is three times the 1 billion

accounts Yahoo said were affected when it first disclosed the breach in December 2016

J A \ HUUNG SRPPRINAN,

A Dangerous Problem

Can we increase guessing costs for the attacker?

Goal: Moderately Expensive Hash Function

Fast on PC and
Expensive on ASIC?

«Cs
|

PlayStation™

Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory costis' O

» Goal: force attacker to lock up large amounts of memory for duration
of computation
- Expensive even on customized hardware

Types of Memory-Hard Functions

e Data-Independent Memory-Hard Functions (iMHFs)
 Memory access pattern during evaluationis independent of the input

* Data-Dependent Memory-Hard Functions (dMHFs)
 Memory access pattern during evaluation may depend on the input
* No restrictions as with iMHFs

Data-Independent vs. Data-Dependent MHFs

* Data-Independent:
 Side-channelresistant
* Weaker memory hardness

* Data-Dependent:

* Possible side-channel leakage Fiv. gl - Lc
e Simple constructions [| [L[] | l 0L

.‘\ 1 L_lj | — |/*"| VRV
* Provably better memory hardness . b i‘:"\l

Why Data-Dependent MHFs?

* Uses where leakage isn’t a concern
» Securing blockchains
* Litecoin/Dogecoin

* Combine with iMHFs
* Data-independent phasesgive baseline memory hardness

Evaluating IMHF (fg)

Defined by
* H:{0,1}%* - {0,1}* (Random Oracle)
* DAG G (encodes data-dependencies)

Input: pwd, salt aﬁ‘b/ _f)utput: fen (pwd,salt)=L,
V~~~

L, = Hpwd,salt) L3 =H(LyLy)

Evaluating an iMHF (pebbling)

pwd, salt

Input: a/'e\e/a_’ Output: L,
1 N ‘N“s
L, = H(pwd, salt) Ly = H(Ly,Ly)

Pebbling Rules : ﬁ=P1,...,Ptc I s.t.
*P..,,C P.U{x € V|parents(x) c P,,} (needdependent values)
*nE P, (mustfinish and output L)

Evaluating A, 3 dMHF(fg)

Defined by
« H:{0,1}** - {0,1}* (Random Oracle)
* DAG Distribution G (Dynamic Pebbling Graph)
* DAG G~@G
 Random edges appear

-_—
/” =~
/7

Input: pwd, salt ?/a\
\

L, = Hpwd,salt) Li=H(LyLy)

\1
? Output: fg , (pwd,salt)=L,
\

Data-Dependent Memory Hard Functions

* Each random edge (r(i), i) is chosen using random label of its
predecessori — 1.

* Example: r(4) = L;mod 2 = H(L,) mod 2
* Upon pebblingnode 3, we discover the edge (1,4)

o T may
- ..
V<

/ \1

Input: pwd, SaIL.“ b/?_f)utput: fen (pwd,salt)=L,
\

\

L, = Hpwd,salt) Li=H(LyLy)

Case Study: Scrypt

 First half line graph

* Second half has dynamic edges coming from the first half

e N=5

* Eachnodei = N/2 has arandom edge (i) from the first half
* Here, L; = H(L;_, L, mod N/Z)

0-0-0-0-0-0-0-0-0-0O

Scrypt: Naive Pebbling Strategy

* |dea: pebble as many nodes as possible
* Never take any pebbles of the graph “just in case”

0-0-0-0-0-0-0-0-0-0O

Scrypt: Naive Pebbling Strategy

* |dea: pebble as many nodes as possible
* Never take any pebbles of the graph “just in case”

0-0-0-0-0-0-0-0-0-0O

Scrypt: Naive Pebbling Strategy

* |dea: pebble as many nodes as possible
* Never take any pebbles of the graph “just in case”

0-0-0-0-0-0-0-0-0-0O

Scrypt: Naive Pebbling Strategy

* |dea: pebble as many nodes as possible
* Never take any pebbles of the graph “just in case”

0-0-0-0-0-0-0-0-0-0O

Scrypt: Naive Pebbling Strategy

* |dea: pebble as many nodes as possible
* Never take any pebbles of the graph “just in case”

-
’_ ~~

0-6-0-0-0-0-0-0-0-O

Scrypt: Naive Pebbling Strategy

* |dea: pebble as many nodes as possible
* Never take any pebbles of the graph “just in case”

~ ”

N——’

Scrypt: Naive Pebbling Strategy

* |dea: pebble as many nodes as possible
* Never take any pebbles of the graph “just in case”

Scrypt: Naive Pebbling Strategy

* |dea: pebble as many nodes as possible
* Never take any pebbles of the graph “just in case”

Scrypt: Naive Pebbling Strategy

* |dea: pebble as many nodes as possible
* Never take any pebbles of the graph “just in case”

Scrypt: Naive Pebbling Strategy

* Question: How memory hard is Scrypt?

666 \e-»%:@

Measuring Cost Attempt 1:
Cumulative Complexity

* |dea: we want to capture how the memory is held-up during the
computation

cc(P) = Y|Pl

cc(G) = minpep{cc(P)}

Strategy S is an algorithm which outputs a pebbling S(G) = P for G~G
cc(G) = minges{E[cc(5(G))]}

Naive pebbling strategy:

* Cumulative Complexity O(N?) is always possible

66-60:0-0-90-00

Cumulative Complexity (CC): iMHFs vs. dMHFs

 Static pebbling graphs (iMHFs) have weaker CC guarantees than dynamic
pebbling graphs (dMHFs)

2
(N loglog N) [ABP17]

* |t’s easy to construct a dynamic pebbling graph (dMHF) with
cumulative complexity 2(N ?)

66-60:0-0-90-00

e Any static DAG has cumulative complexity O

Does Cumulative Complexity Capture
Memory Hardness?

e Scrypt has maximal cumulative complexity Q2(N?)! [ACP+17]
e Unfortunately, cumulative complexity doesn’t always imply
high memory usage

0-0-0-0-0-0-0-0-0-0O

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

0-0-0-0-0-0-0-0-0-0O

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

0-0-0-0-0-0-0-0-0-0O

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

0-0-0-0-0-0-0-0-0-0O

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

0-0-0-0-0-0-0-0-0-0O

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

0-0-0-0-0-0-0-0-0-0O

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

[]
’4— -y

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

0-0-6-0-0-0-0-0-0-O

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

0-0-6-0-0-6-0-0-0-0

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

0-0-6-0-0-0-0-0-0-0

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

0-9-6-0-0-0-9-0-0-0

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

0-0-6-0-0-0-9-0-0-0

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

0-9-6-6-0-0-9-0-0-0

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles

©:0:6-6-0-09-0-9->

Scrypt: Low Memory Strategy

* |dea: only keep a minimal amount of pebbles
 CCis still O(N?) but we used O(1) space!

©:0:6-6-0-09-0-9->

Recall: Memory Hard Function (MHF)

* Intuition: computation costs dominated by memory C05t5| nin

* Goal: force attacker to lock up large amounts of memory for duration
of computation
- Expensive even on customized hardware

Memory Cost Attempt 2:
Sustained Space Complexity (SSC)

* s-Sustained Space: the number of rounds in which at least s
pebbles on the graph [ABP17]

e s-SSC(P) =Y |{i:|P_i|] = s}

e Stronger than CC
* |f a pebbling with S-SSC of T has CC at least ST

* Scrypt has s-Sustained Space of O forany s > 2

* Isthere a family of pebbling graphs which requires 2(N)
pebbles for 2(N) steps?

©-0-6:6-0-0-9-0-0-D

Sustained Space: iMHFs vs. dMHFs

* No, every pebbling graph (dynamic or otherwise) has a
strategy that sustains O(N/log N) for some number (maybe
exponentially many) steps [HPV77]

* |dea: let’s try to construct graphs where low memory
attackers have huge CC

Thiswork: CC/SSC Trade-Offs

* Goal: Forsome 0 < p,¥ < 1, constructa (dynamic) pebbling
graph such that any strategy either sustains at least pN
pebbles for at least £N steps, or has CC .Q(N3)

* Why do we need dMHFs and dynamic pebbling graphs?

* Forany 0 < ¢ < 1there’sa 0 < ¢’ < 1 such that any static graph
on N nodes can be pebbled using at most cN pebbles for ¢'N
steps [LenTar79]

* We hope that dynamic edges can leave a low-memory attacker
unprepared to answer the challenge

CC/SSC Trade-offs for Dynamic Pebbling
Graphs

We examine four dynamic pebbling graph families

* Practicality: graphs having constant indegree is necessary for
their MHFs to be usable in practice

Dynamic Graph Indegree Sustained Space Cumulative Cost
(over .(2(N) steps)

Scrypt [Per09] O(N?)
Hybrid EGS [EGS75] 0(logN) 2(N) Q(N3)
Argon2id 2 N(N1=¢) N(N?t2%¢)
[BDK2015]
Hybrid DRSample 3 o(N o(N3
[ABH17] (/logN) (/logN)

Our Construction 2 2(N) _Q(N3—e)

Thiswork: CC/SSC Trade-Offs

e General construction: have dynamic edges coming from the
first half of the graph which is
* Highly connect and has high cumulative complexity

[\

6-0-0-0-0-0-0-0-0-O

Thiswork: CC/SSC Trade-Offs

e General construction: have dynamic edges coming from the
first half of the graph which is
* Highly connect and has high cumulative complexity

Thiswork: CC/SSC Trade-Offs

e General construction: have dynamic edges coming from the
first half of the graph which is
* Highly connect and has high cumulative complexity

* |f a strategy has few pebbles on the graph

Thiswork: CC/SSC Trade-Offs

e General construction: have dynamic edges coming from the
first half of the graph which is
* Highly connect and has high cumulative complexity

* |f a strategy has few pebbles on the graph

* |t will have to pebbles a large proportion of the first half,
incurring high CC

Ingredient 1: ST-Robust Graphs [BC21]

 Maximally ST-Robust Graph ST
* Ninputs, N outputs
* Forany kandD <€V of size k, there are paths fromn — k
inputs each ton — k outputsin ST — D
* Even after removing many nodes, there are still paths from
many inputs to many outputs

Ingredient 2: Depth-robustness

* Agraph G = (V,E)is (e, d)-depth robustif forany S € IV
with |S|, G — S has depth at least d.
 If Gis (e d)-depth robust, then cc(G) = ed [ABP17]

[\

6-0-0-0-0-0-0-0-0-O

Ingredient 2: Depth-Robust Inputs

* Overlay an (2(N), d)-depth robust graph on the inputs to the
ST-robust graph

* Pebbling many inputs takes CC 2(Nd)

* How can we make a low-memory attacker repebble the inputs
many times?

Ingredient 3: A Line Graph with Dynamic
Edges

 Aline graph on N nodes

 Random edges from each node of the to each node
in the outputs

* |f an attacker doesn’t have many pebbles on the graph, then
they’ll likely not have a pebble on (i)

* There are likely many paths to (i) from many inputs

* Each time this happens it costs CCQ(Nd)

e |f the strategy is low memory, then this happens
Q(N) times, resulting in CC Q(N4d) oy @

Our Construction: Instantiations

* These dynamic pebbling graphs are constructed
with the parameterized depth-robust graph over
the inputs

 We use the Grates construction, which is
(Q(N), Q(N17¢))-depth robust [Sch83]

* Result: Any pebbling strategy either sustains pN
pebbles for N steps, or has CC Q(N37¢€)

Conclusion and Open Problems

* Showed that some current/practical MHFs have high
SSC/CC tradeoffs

* Theoretical construction with almost maximal trade-offs

* Open Problem: pebbling reduction for dMHFs?

* |sit possible to have a constant indegree graph where any
strategy must sustain Q(N) pebbles for Q(N) or have CC
Q(N3)

